Energy Efficient Streetlights and Outdoor Lighting

Presented by George A. Woodbury Republic ITS-A Siemens Company

Goal - To Create an Understanding of:

- Acquisition-
- Introduction/Terminology
- Status of the Industry
- IESNA RP-8
- Design Considerations
- Acqu

Street Light Acquisition

MGL 164 § 34A
Savings 20-60%
Energy Efficiency Upgrades & Incentives
MGL 25A § 11C

Terms And Definitions

Lumens

Color Rendition Index

Correlated Color Temperature

Efficacy

Lumens

- Measure of the total light output of a light source
- Measured in a sphere
- Unit of measure-Candela
- Measure of light level on a surfacefootcandle or candela/meter squared

Color Rendition Index-CRI

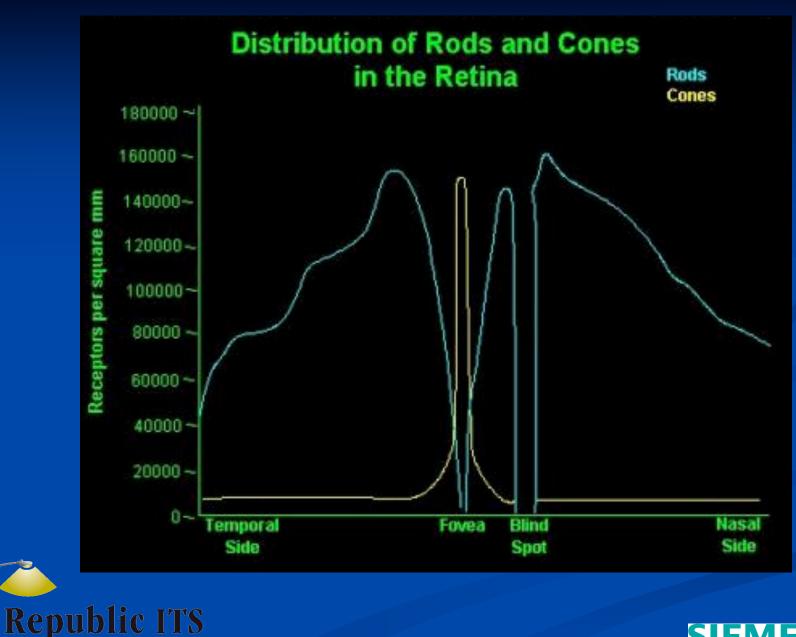
Relative ability of a light source to match the color rendering of a standard reference source

Incan- descen t	Mercury Vapor	HPS	LPS	MH	Ceramic MH	Inductio n	LED
100	20-45*	21	0	65- 70*	85-92	70-82	68- 80

*Coated lamps provide higher CRI CRI impacts on night vision

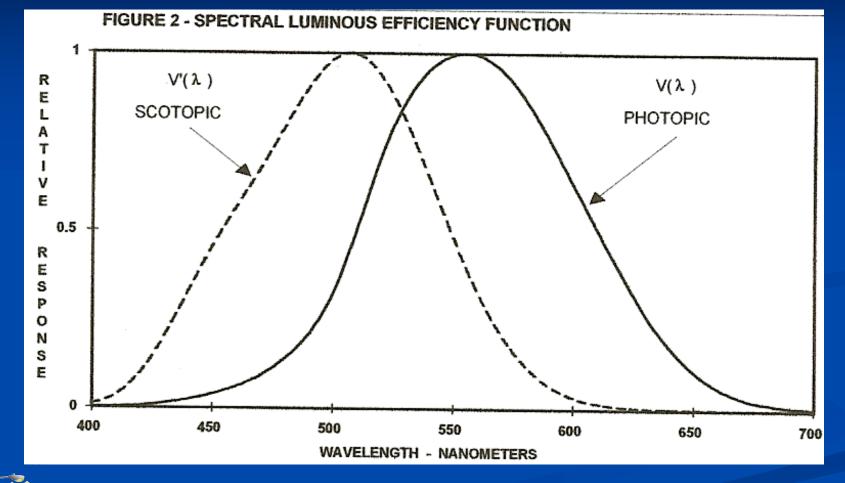
Night Vision Basics

Rods and Cones


Rods-night vision-visual purple
 Cones-daylight vision-three types
 Scotopic-Mesopic-Photopic Vision

Pupil Lumens affect of light wavelength on pupil

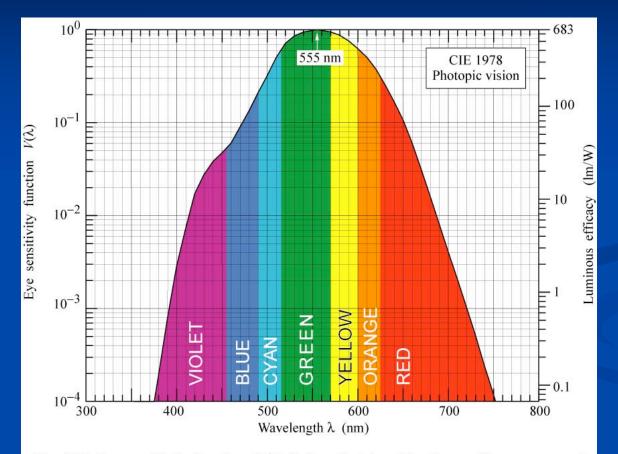
Affect of color on visual effectiveness

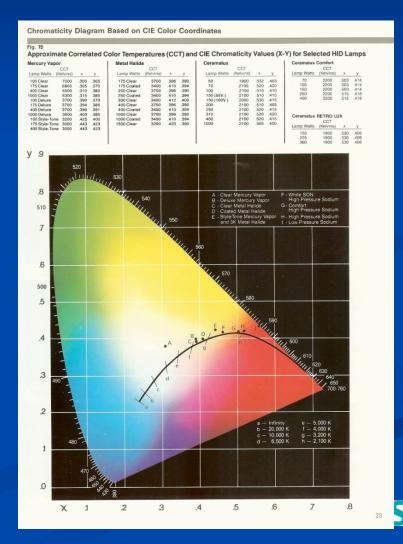


Intelligent Transportation Services

Wavelength Sensitivity

Photopic Sensitivity




Fig. 16.7. Eye sensitivity function, $V(\lambda)$, (left ordinate) and luminous efficacy, measured in lumens per Watt of optical power (right ordinate). $V(\lambda)$ is greatest at 555 nm. Also given is a polynomial approximation for $V(\lambda)$ (after 1978 CIE data).

given is **Republic ITS** Intelligent Transportation Services

Correlated Color Temperature-CCT

Measured in
 Degrees Kelvin
 Warm to Cool
 2800⁰ to 5000⁰

Efficacy

- Measure of Lumens per watt of power
- Not a measure of system efficacy
- Useful lumens

- Glare

Maximum possible RGB efficacy 400 lm/W or source efficacy of Republic lm/W

LED Street Lights-Where are we?

- Prices have nearly dropped by 50%
- Efficacy 19 lm/watt to 208
 lm/watt
- Most streetlights 68 Im/watt to 90 Im/watt
- Drive wattages from 3 volts to 46 volts
- Life expectancy at 700mA from 50,000 hrs to over 100,000 hours

What Can We Expect

Efficacy to exceed 100 lm/w
Sapphire Substrate
Heat Management
Color Temperature shift to warmer CCT

Adaptive controls

Changing Standards-IESNA

 Scotopic vs Photopic-S/P ratios
 BUG-Backlight, Uplight, <u>Glare</u>
 Luminance vs. small target visibility

Pedestrian vs. Roadway

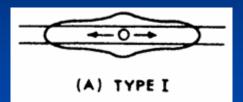
Designing and Upgrading Your System

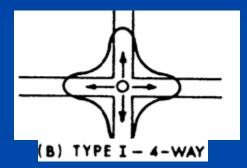
Redesign/retrofit

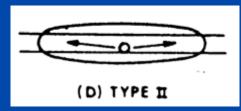
Project goals

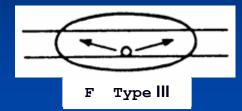
Politics, Public & Finances

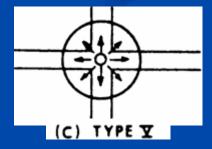
Cost considerations


Energy cost


- First costs
- Energy costs-metered/ummetered

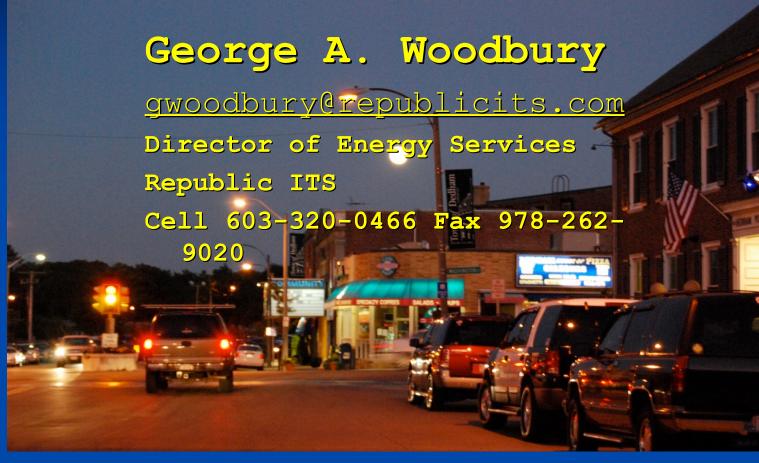



Distribution Patterns



Modifying Existing Systems

- Map system-capture attributes
- IESNA guidelines
- Standardize lighting levels
- Adjacent land use
- Route classification
- Any special considerations
- Lamp type
- Goals-New Construction



100w HPS Replacement

		Watts	Cost	Lamp rating Lumens		Efficacy Im/watt	Annual Energy Savings @ \$.10
	100w HPS	118	N/A	9600	6240 (4368)	56	
	30 Led						
	350 mA	35	\$325	2,936	2,789.2	85.3	\$ 34.03
	525 mA	51	\$325	4,086	3,881.7	81	\$ 27.47
	700 mA	70	\$325	5,257	4,994.2	75.2	\$ 19.68
4	40 LED						
	350 mA	45	\$375	3,897	3,702.2	87.3	\$ 29.93
	525 mA	66	\$375	5,423	5,151.9	82.1	\$ 21.32
-	700 mA	92	\$375	6,922	6,575.9	75.5	\$ 10.66

SIEMENS

