PFAS Treatment Options and Case Studies

Kyle Hay, PE, Project Manager

MMA Webinar on PFAS Wednesday, July 21, 2021

Expect to see more impacted sites

- Continue, or begin, to develop good will within the community served.
 - Customer Service & Call Center Staff are First Line of Defense
 - Engage with Community

• Develop an emergency response plan.

Exhausted all other options

Alternatives:

- Can't abandon source
- No alternative sources
- No interconnections
- No blending available

"Conventional" treatment technologies do not work for PFAS removal

- Coagulation, flocculation, sedimentation
- Sand, anthracite, greensand filtration
- Disinfection processes

Do not have a significant impact on PFAS concentrations.

Granular Activated Carbon

- Advantages cost effective, numerous systems in use,
 PFAS can be transported offsite for destruction
- Disadvantages may be costly to changeout for short chain breakthrough, footprint/building height

Ion Exchange Resins

 Advantages – custom designed treatment, long service life, smaller vessels required

 Disadvantages – expensive if single use, newer technology with limited data

Reverse Osmosis

 Advantages – near 100% removals Perforated Central Perforated Central Permeate Concentrates Permeate Collection Material Membrane Feed Channel Spacer Membrane Feed Channel Spacer Outer Wrap

 Disadvantages – waste stream, high capital and O&M costs, more complex system

Generally still GAC vs IX resin

Design considerations:

- Flow rates and vessel size
- Footprint available
- Pretreatment requirements
- PFAS concentrations
- Waste handling
- Capital vs O&M costs

Typical Pressure Filter Design

Is short term treatment needed?

- Typically GAC is selected
- Helps with data collection to support a design
 - Performance and O&M costs
- Buys time
 - Work on permanent design
 - Explore alternative options
 - Find funding

Case Study: Former US Army Base Fort Devens

- Devens, MA
- Base shut down in 1996
- Majority overseen by MassDevelopment
- Expanding office space with some light industrial, college buildings, golf course, restaurants

Shaboken Well

- Well capacity: 1,200 gpm
- PFAS ~30-40 ppt
- Temporary Design
 - Two pair 12' GAC vessels
 - Up to 900 gpm (10 min EBCT)
 - Insulated membrane structure (installed at later date)

Shaboken Well Temporary Filters

MacPherson Well

- Well capacity: 650 gpm
- PFAS: ~120-130 ppt
- Temporary Design
 - Single 10' GAC vessel
 - 400 gpm (10 min EBCT)
 - Scaffolding structure for winterization (installed at later date)

MacPherson Well Temporary Filter

Patton Well

- Well Capacity: 1,200 gpm
- PFAS ~30-40 ppt
- Temporary Design
 - Three 4' diameter resin filters
 - 200 gpm each (parallel flow)
 - Insulated storage container

Patton Well Temporary Filters

Summary & Conclusion

- PFAS is a contaminant and drinking water systems must prepare and adapt
- Communication, community
- Experient publiclanging, atongritical times for analytical services and equipment
- PFAS treatment is complex not just treating for PFAS!
- Prepare for uncommon issues with any response plan expect the unexpected!

PFAS Treatment Options and Case Studies

Kyle Hay, PE, Project Manager hayk@wseinc.com

603-263-9296

